Acquiring Mobile Robot Behaviors by Learning Trajectory Velocities
نویسندگان
چکیده
The development of robots that learn from experience is a relentless challenge confronting artificial intelligence today. This paper describes a robot learning method which enables a mobile robot to simultaneously acquire the ability to avoid objects, follow walls, seek goals and control its velocity as a result of interacting with the environment without human assistance. The robot acquires these behaviors by learning how fast it should move along predefined trajectories with respect to the current state of the input vector. This enables the robot to perform object avoidance, wall following and goal seeking behaviors by choosing to follow fast trajectories near: the forward direction, the closest object or the goal location respectively. Learning trajectory velocities can be done relatively quickly because the required knowledge can be obtained from the robot’s interactions with the environment without incurring the credit assignment problem. We provide experimental results to verify our robot learning method by using a mobile robot to simultaneously acquire all three behaviors.
منابع مشابه
Acquiring Mobile Robot Behaviors by Learning Trajectory Velocities with Multiple FAM Matrices
In this paper we describe an unsupervised robot learning method which is based on the robot learning a mapping between sensors and trajectory velocities. This enables the robot to acquire object avoidance, wall following and goal seeking behaviors simultaneously without incurring the credit assignment problem. To improve the robot’s perception and behaviors we provide the robot with 7 FAM matri...
متن کاملTrajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)
In recent years, soft computing methods, like fuzzy logic and neural networks have been presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...
متن کاملNeuronal Architecture for Reactive and Adaptive Navigation of a Mobile Robot
A neural architecture that makes possible the integration of a kinematic adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro-controller is proposed for nonholonomic mobile robots. The kinematic adaptive neuro-controller is a real-time, unsupervised neural network that learns to control a nonholonomic mobile robot in a nonstationary environment, which is te...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملLearning Mobile Robot Behaviours by Discovering Associations Between Input Vectors and Trajectory Velocities
In this paper, we describe a reinforcement robot learning method which enables a mobile robot to simultaneously acquire the ability to avoid objects, follow walls and control its velocity as a result of interacting with its environment. Our approach differs to conventional reinforcement learning approaches in that the robot learns associations between input vectors and trajectory velocities rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Auton. Robots
دوره 9 شماره
صفحات -
تاریخ انتشار 2000